技術概要書(様式)

出展技術の分類	安全・防災 インフラDX 維持管理	環境 コスト	品質 (該当分類に〇を付記)
技術名称	下部水密可動式無動力自動開閉ゲート	担当部署	九州営業所
NETIS登録番号	HK-190010-A	担当者	土田 智雄
社名等	旭イノベックス株式会社	電話番号	092-892-4521

技術の概要 1. 技術開発の背景及び契機

・従来は敷段差のない既設の引上げ式樋門ゲート設備を無動力自動化にするにあたり、既設の水路を 大幅に改修し敷段差を設けていた。しかし敷段差を不要とすることで土木構造物の改修範囲が減少し、 また翼壁の長さの制約もなくなった事により、一層の低コスト・短工期でのゲートの無動力自動化を可能 としました。

2. 技術の内容

「バランスウェイト式フラップゲート」と「下端揺動式水密ゴム」を組み合わせることにより、フラットな水 路底面においても下部の水密を確保でき、水路の敷段差を不要としました。

「下端揺動式水密ゴム」は、扉体の内部に収納されたウェイトフロートにより、扉体の開閉、水位の変動 に合わせて開閉を行います。

3. 技術の効果

- ・社内での水路実験(0.70mx0.70m)により、樋門ゲートとしての機能は確認済みです。
- ・敷段差を設置した自動開閉式ゲートとの比較ではゲート工事費+土木工事で60%程度のコスト削減ま た、短期間での施工が可能になりました。

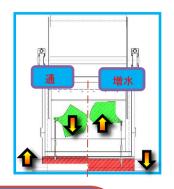
4. 技術の適用範囲

- 自然条件 ①水路の堆泥、堆砂が比較的少ないこと。
 - ②水路に玉石などが常時堆積していないこと。
- ・現場条件 ①水路翼壁の条件はフラップゲートと同様です。
 - ②翼壁が無くても設置が可能です。
- ・適用範囲 ①□1.0m~□2.0m程度が特にコスト縮減効果が高くなります。
- ・懸念事項 ①側部拡幅形状よって適用できない場合があるので個別に検討が必要となります。
 - ②波浪の影響を直接受ける場所への設置には別途検討が必要となります。

5. 活用実績

国の機関・・・40件(九州 0件、九州以外 40件)

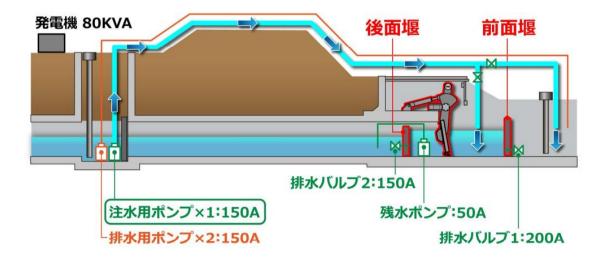
自治体 ・・・15件(九州 0件、九州以外 15件)


民間 ••• 0件(九州 0件、九州以外 0件)

6. 写真•図•表

下端揺動式水密ゴムの動

フィールド試験【実施日2023年5月】


北海道開発局 石狩川 越後村樋門(純径間1.50m×吐口高 1.50m)

試験内容

①全閉確認

【3】ゲート前面からの注水

注水ポンプによりゲート前面に注水し、内外水位を同時に上昇させます。

